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Decoherence and thermalization in a simple bosonic system
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Properties of a parameter-dependent quantum system with the HamiltonianĤ(l) randomized by fluctua-
tions of the parameterl in a narrow range are investigated. The model employed~the interacting boson
model-1! exhibits a crossover behavior at a critical parameter value. Due to the fluctuations, individual eigen-

statesuca(l)& of the Hamiltonian become statistical ensembles of states@density matrices%̂a(l)#, which
allows us to study effects related to the decoherence and thermalization. In the decoherence part, we evaluate

von Neumann and information entropies of the density matrices%̂a(l) and the overlaps of the eigenstates of
the density matrix with various physically relevant bases. An increased decoherence at the ‘‘ phase transi-
tional’’ point and an exceptional role of the dynamic-symmetry U~5! basis are discovered. In the part devoted

to the thermalization, we develop a method of how a given density matrix%̂a(l) can be represented by an
equivalent canonical~thermal! ensemble. Thermodynamic consequences of the quantum ‘‘phase transition’’
~related, in particular, to the specific heat of the thermal equivalent! are discussed.
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I. INTRODUCTION

In recent years, one can observe an increasing intere
physical models whose Hamiltonians contain random v
ables ~see, e.g., Refs.@1–9#!. The reasons why random
Hamiltonians are found important in various areas of phys
are very different. The randomness can, for instance, mi
the sampling of a multidimensional parameter space o
deterministic and stationary quantum-mechanical problem
question~especially if the actual Hamiltonian parameters a
not precisely known, like in the case of nuclear interactio
@3,5#!. A great success of random matrix theory, in particu
in applications of invariant ensembles of Hamiltonia
~Gaussian orthogonal/unitary ensembles or the embedde
sembles! @2,3,9#, is related to the fact that the averaging ov
random Hamiltonians of certain symmetry reveals the m
generic dynamic properties. In contrast, the randomness
also represent real adiabatic fluctuations of an effec
Hamiltonian in time@1# ~like in the case of atoms subject t
randomly varying external fields!. In view of the very differ-
ent purposes for studying random Hamiltonians, it does
surprise that the spectrum of relevant theoretical problem
very wide. Along with the problems well accommodated
physics, as the description of local correlations in spectra
eigenstates of complex systems, it extends to fundame
but still not fully understood problems related to the dec
herence@6,10–12# and thermalization@4,13–16#. These as-
pects are addressed in the present paper.

The random Hamiltonian we use arises from a determ
istic, parameter-dependent HamiltonianĤ(l) through fluc-
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tuations of the parameterl in a narrow range, i.e.,

Ĥ~l!→Ĥ~l1dl!, ~1!

where dl is a random variable. The concrete model e
ployed, representing a simplified system of bosons, is
scribed in Sec. II. The randomization in Eq.~1! implies that
instead of definite energy eigenstates one has to deal
statistical ensembles of states~density matrices! and the cor-
responding energy distributions. Such a transition from p
to mixed states resembles the environment-induced deco
ence process@10#, widely discussed in connection with th
fundamentals of quantum theory. One of the aims of t
paper is to show that the study of random Hamiltonians
the type~1! can be instructive for understanding of decoh
ence effects that occur in realistic systems. A particula
interesting question concerns the relation of the formally
troduced pointer basis@11,12#, i.e., the eigenbasis of the den
sity matrix, to the physically relevant bases. These proble
are investigated in Sec. III. We find the evidence of a no
trivial and sensitive dependence of the pointer basis on s
cific properties of the unperturbed Hamiltonian.

Another part of the paper is devoted to the problem
thermalization in finite quantum systems@13#. It appears to
hold generically that any system of particles with a su
ciently complex interaction can be, to a large extent, char
terized by purely thermal attributes, like the grand canoni
population of single-particle states or thermodynamic
tropy in its relation to the complexity of the eigenstat
@4,14–16#. Using the random Hamiltonian~1!, we analyze in
Sec. IV another method of assigning a temperature scale
given system. A special attention is paid to the corresp
dence between thermal and quantum-mechanical prope
of the system in the vicinity of the phase-transitional beh
ior @17#.
©2001 The American Physical Society27-1
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II. THE MODEL

In the present work, the parameter-dependent Ham
tonianĤ(l) of Eq. ~1! was chosen within the framework o
the interacting boson model~IBM !, well known in the de-
scription of collective excitations of atomic nuclei@18,19#. In
its simplest form~IBM-1!, the model describes a system of
fixed total numberN of bosons with spins 0 or 2 (s and d
bosons!. The model Hilbert space is finite, its basis bei
generated byN successive applications of boson creation o
eratorss† and/ordm

† ~wherem522, . . . ,12 is the spin pro-
jection! on a vacuum stateu0&. The most general IBM-1
Hamiltonian contains all possible one- and two-body ter
and has five free parameters~if not counting the additive and
scaling constants!. Varying these parameters, one can rea
the domains of the parameter space where the model
sesses one of its possible dynamical symmetries; the Ha
tonian then becomes analytically solvable and integrable

We use a simplified, single-parameter Hamiltonian t
continuously covers the limiting cases of the SU~3! and U~5!
dynamical symmetries

Ĥ~l!5l n̂d2
12l

N
Q̂•Q̂. ~2!

Here

n̂d5d†
•d̃ ~3!

is thed-boson number operator and

Q̂m5dm
† s1s†d̃m2

A7

2
~d†3d̃!m

(2) ~4!

is a quadrupole operator@‘‘ • ’’ and ‘‘ 3 ’’ stand for the scalar
and tensor products, respectively, andd̃m5(2)md2m ; the
angular momentum in the IBM is defined asL̂m5A10(d†

3d̃)m
(1)#. The SU~3! dynamical symmetry is reached forl

50 and the U~5! symmetry forl51; we therefore conside
the parameter rangelP@0,1#.

It is well known that the SU(3)→U(5) transition has a
critical character in the IBM@18,20,21#. For the Hamiltonian
~2!, a kind of a phase transition takes place atl'0.8, where
a multiple avoided crossing of levels in the lower part of t
spectrum increases the efficiency of mixing of the cor
sponding eigenfunctions@17#. The form of the eigenstate
changes drastically in this region resulting in an abrupt on
of the U~5! regime ~similar to first-order phase transition
@22#!. To be exact, for finite boson numbers one can only t
about quasicriticality because the transition is not truly d
continuous. It was shown, nevertheless, to be fast eno
even for not too large boson numbers@17#. Thel-dependent
energy spectrum$Ea(l)%a51

n of the states with angular mo
mentumL50 is shown in Fig. 1 for the total number o
bosonsN530 ~cf. Figs. 4 and 5 in Ref.@17#!. In this case,
the dimensionn591. A ‘‘macroscopic’’ avoided crossing o
the levels located in the lower part of the spectrum can
identified in the criticall'0.8 region, while some mino
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binary level collisions appear at other places. These st
tures will be shown to play an important role in the followin
analyses.

After the randomization according to Eq.~1!, the Hamil-
tonian can be expressed as

Ĥ~l1dl!5Ĥ~l!1dl Ĥ8 ~5!

with

Ĥ85n̂d1
1

N
Q̂•Q̂. ~6!

We considerdl to be a Gaussian random variable with ze
mean and dispersions2!1. The unperturbed part of th
Hamiltonian~5! is deterministic and carries the dependen
of the problem onl, while the randomness is introduce
through the fluctuating strength of the perturbationĤ8. Note
that the incompatibility of both the terms in Eq.~5! ~and thus
the efficiency of the random perturbation! has noa priori
parametric dependence since the commutator

@Ĥ~l!,Ĥ8#5
1

N
@ n̂d ,Q̂•Q̂#Þ0 ~7!

is independent ofl.

III. DECOHERENCE

Due to the fluctuations of the parameterl in the Hamil-
tonian Ĥ(l), any of its eigenstatesuca(l)&5( iai

a(l)u i &
transforms into a density operator defined@6# by

%̂a~l!5E d@dl#uca~l1dl!&p~dl!^ca~l1dl!u,

~8!

wherep(dl) is the distribution of the fluctuationsdl in Eq.
~1!. Equation~8! enables one to use the standard formali
of quantum statistical physics, calculating the ensemble

FIG. 1. The parameter-dependentL50 spectrum of the Hamil-
tonian ~2! with N530.
7-2
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DECOHERENCE AND THERMALIZATION IN A SIMPLE . . . PHYSICAL REVIEW E 63 036127
erage of any physical quantityA as ^A&5tr(Â%̂). The en-
semble averaging can be considered equivalent to the
averaging in case of slow, adiabatic fluctuationsdl(t). In an
arbitrary basisB[$u i &% i 51

n , the density operator~8! has the
following form:

^ i u%̂a~l!u j &[% i j
a~l!B

5E d@dl#p~dl!aj
a~l1dl!* ai

a~l1dl!.

~9!

Its diagonalization then yields, at each pointl, the density-
matrix eigenvaluesrp

a(l) and eigenvectorsufp
a(l)&

%̂a~l!5 (
p51

n

ufp
a~l!&rp

a~l!^fp
a~l!u. ~10!

It is clear that the diagonalized form of the density mat
contains only information on the occupation probabilities
the density-matrix eigenstates and no quantum correlati
The eigenbasis

B p
a~l!5$ufp

a~l!&%p51
n ~11!

will hereafter be called thepointer basis, in agreement with
Refs.@10–12#. In our case it is associated with a given val
of l and theath energy eigenstate. It should be stressed
whereas the pointer basis fundamentally results from an
teraction of the given system with an environment~this
makes initial pure states of the system develop into statis
mixtures! @10#, in our case it arises through the fluctuation
l.

The degree of ‘‘impurity’’ of a given mixed state%̂ is
quantified@6# by von Neumann entropyS52tr(%̂ ln %̂), i.e.,
for the density matrix~10!,

Sa~l!52 (
p51

n

rp
a~l!ln rp

a~l!. ~12!

It varies from zero for a pure state (rp5dpp0
) to lnn for a

maximally uncertain mixed state (rp51/n). In a similar
fashion, the degree of fragmentation in a fixed basisB can be
expressed via Shannon information entropy~cf. Refs.
@14,15,23–25# and references therein!

I B
a~l!52(

i 51

n

% i i
a~l!B ln % i i

a~l!B . ~13!

Again, information entropy increases from 0 to lnn as the
state is getting more fragmented in the basisB. Von Neu-
mann entropy~12! depends on both on-diagonal and o
diagonal matrix elements of the density matrix in any ba
and its value is basis independent. On the contrary, infor
tion entropy ~13! neglects correlations carried by the of
diagonal elements in the specific basisB and thus depends o
B. It would coincide with von Neumann entropy if the co
relations vanish due to a dynamical decoherence proces
03612
e

f
s.

at
n-

al
f

s
a-

in-

duced by an interaction with additional degrees of freedo
In case of no extra interaction, however, information entro
merely disregards a part of quantum knowledge available
the system.@See, however, the discussion@14,15# of the
inter-relation between thermal~von Neumann! invariant en-
tropy, wave function ~information! entropy, and single-
particle fermion entropy calculated in the nuclear sh
model basis; for the self-consistent mean field they are p
tically equivalent due to the self-averaging.# For the purpose
of this paper, we call von Neumann entropy~12! coherent
~similar to ‘‘correlational’’ of Ref.@6#!, whereas information
entropy~13! will be referred to asincoherent.

The family of physically informative entropies can b
supplemented byoverlapentropyO. We define it as a mea
sure of the average overlap between the two basesB
[$u i &% i 51

n andB8[$u j 8&% j 51
n

O~B,B8!52
1

n (
i 51

n

(
j 51

n

z^ i u j 8& z2 lnz^ i u j 8& z2. ~14!

Its minimal value,O50, is reached forB5B8. As the two
bases deviate from each other, the overlap entropy incre
but—because of the orthogonality constraints—it can ne
reach the uppermost limit lnn. A probable saturation value i
close toOran' ln(0.48n), which is the asymptotic expecta
tion value of the overlap entropy for two randomly chos
bases, as determined by the random-matrix theory. Infor
tion entropy of eigenfunctions studied from the viewpoint
many-body chaos@15,25# is in fact overlap entropy of the
eigenbasis and a ‘‘simple’’ reference basis, for example,
mean field one.

Of special interest in the present problem is the cho
when the reference basisB of incoherent entropy~13! coin-
cides with the local eigenbasis ofĤ(l),

Bl~l![$ucb~l!&%b51
n . ~15!

Perturbation theory can be used to develop a simple form
relating coherent and incoherent entropy with overlap
tropy between the local and pointer bases. Namely, ifdl in
Eq. ~5! is considered to be small enough, it is sufficient
expand the density matrix~9! in the local basis~15! up to the
^dl2&[s2 terms@6#. In this approximation, the density ma
trix %̂a corresponding to the energy termEa(l) has just two
nonzero eigenvalues,p51 and 2,

r1
a~l!'12s2wa~l!, ~16!

r2
a~l!'s2wa~l!, ~17!

where

wa~l!5 (
bÞa

@vb
a~l!#2, ~18!

vb
a~l!5

^cb~l!uĤ8uca~l!&

Eb~l!2Ea~l!
, ~19!

with the corresponding eigenvectors
7-3
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uf1
a~l!&'uca~l!&, ~20!

uf2
a~l!&'

1

Awa~l!
(

bÞa
vb

a~l!ucb~l!&. ~21!

For coherent and incoherent entropy in Eqs.~12! and ~13!,
we obtain

Sa~l!'2r1
a~l!ln r1

a~l!2r2
a~l!ln r2

a~l! ~22!

and

I Bl(l)
a ~l!'2r1

a~l!ln r1
a~l!

2 (
bÞa

@svb
a~l!#2 ln@svb

a~l!#2, ~23!

respectively, while overlap entropy between the local a
pointer bases is given by

O@Bl~l!,B p
a~l!#'2

1

n (
bÞa

@vb
a~l!#2

wa~l!
ln

@vb
a~l!#2

wa~l!
.

~24!

Whereas coherent and incoherent entropy, Eqs.~22! and
~23!, respectively, both vanish ifs2→0, the overlap entropy
in Eq. ~24! stays nonzero for anys2.0 because even
small perturbation singles out the same direction in dens
matrix eigenspace@6# regardless of the strength, see Eq.~21!.
Combining the last expression with Eqs.~22! and ~23!, one
obtains

I Bl(l)
a ~l!2Sa~l!'s2n wa~l!O@Bl~l!,B p

a~l!#. ~25!

This means that incoherent entropy in the local basis is la
than corresponding coherent entropy, the difference be
proportional to overlap entropy between the local and poin
bases. In general, the difference of incoherent entropy,
~13!, in an arbitrary basisB[$u i &% i 51

n and coherent entropy
Eq. ~12!, is not negative and can be written down as

I B2S5 (
p51

n

rpF ln rp2(
i 51

n

z^ i ufp& z2lnS (
p851

n

rp8z^ i ufp8& z2D G
~26!

~we skipped here the reference toa andl). Thus, for a pure
staterp5dpp0

, S50 while I B gives information entropy of

the pointer stateufp0
& in the basisB. Only in the chaotic

limit of rp51/n, we come toS5I B5 ln n.
The above discussed entropies were calculated num

cally for the random Hamiltonian~5! with N530. The re-
sults forL50 states labeled bya51, 4, and 30~cf. Fig. 1!
are shown in Figs. 2, 3, and 4, respectively. The Gaus
distribution p(dl) was used witĥ dl&50 andA^dl2&5s
50.01, and the parameter range displayed isl
P@0.03,0.97#. The upper panels of Figs. 2–4 present coh
ent entropy~12! and incoherent entropy~13! in the local
basisB5Bl(l). The used value ofs is clearly small enough
03612
d
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g
r
q.

ri-

n

-

to keep the perturbative relation~25! valid. The respective
lower panels display overlap entropies~14! of the pointer
basisB p

a(l) with the local basisBl(l), with the SU~3! basis
Bl(l50), and with the U~5! basisBl(l51). As seen from

FIG. 2. Entropies characterizing the density matrix~8! con-
nected with the firstL50 eigenstate of the Hamiltonian~2! for N
530 bosons as functions ofl. The rms of the zero-mean Gaussia
variabledl is s50.01. The coherent entropy and incoherent e
tropy in the local basis, Eqs.~12!, ~13!, and~15!, are drawn in the
upper panel. The lower panel shows overlap entropies, Eq.~14!, of
the pointer basis with the local SU~3! and U~5! bases.

FIG. 3. The same as in Fig. 2, but for the fourthL50 state.
7-4
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DECOHERENCE AND THERMALIZATION IN A SIMPLE . . . PHYSICAL REVIEW E 63 036127
the upper panels of Figs. 2–4, the response of thel depen-
dence of coherent and incoherent entropy varies substan
for different energy termsa. While the ensemble originating
from the ground state (a51) produces a single peak of bo
coherent and incoherent entropy at the phase-transiti
point l50.8, the other two ensembles lead to more com
cated structures. In the case ofa54 ~Fig. 3!, the increase of
S and I still takes place in the phase-transitional region 0
,l,0.9, but it does not have a single-peaked form. Foa
530 ~Fig. 4!, bothS andI develop a chain of peaks rangin
from l'0.2 to 0.9. The underlying mechanism responsi
for these differences is the mixing of various eigenfunctio
induced by the change ofl. It was extensively discussed i
the framework of the universal decorrelation theory
parameter-dependent systems~see, e.g., Refs.@26,27#!, and
also specifically for the IBM-1@17#. The proximity of levels
enhances the efficiency of mixing@cf. Eq. ~19!#. Indeed, un-
der a scrutiny, one can find a one-to-one corresponde
between the peaks ofSandI in Figs. 3 and 4 and the avoide
crossings of the respective lines (a54 and 30! with their
neighbors in Fig. 1.

Overlap entropies in the lower panels of Figs. 2–4 a
carry interesting physical information. First, the overlap b
tween the pointer and SU~3! bases is essentially rando
within the whole parameter range displayed and for all th
states considered~in the present case, the above-mention
saturation value of overlap entropy isOran'3.78). On the
other hand, inspite of the independence of the commutato
Eq. ~7! on l, the overlap of the pointer basis with the loc
and U~5! bases substantially increases~the overlap entropy
decreases! abovel'0.8; below this point it again reache
the random limit. Especially interesting is the fact that f
a51 and 4~Figs. 2 and 3!, the pointer basis overlaps mor
with the U~5! basis than with the local bases forl

FIG. 4. The same as in Fig. 2, but for the thirtiethL50 state.
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P@0.8,1#. In this region, the U~5! basis serves as a
‘‘attractor’’—the pointer basis always deviates from the l
cal basis in the direction of the U~5! basis. This finding
seems to generalize the known sharp onset of the U~5! com-
ponent in wave functions of low-lying states at the pha
transitional point@17#. It does not therefore surprise that—
similar to the wave-function case—the preference of
U~5! basis to the local bases disappears for higher-ene
states, like the one witha530 in Fig. 4.

We would like to emphasize here the relation of top
studied in this section to the general decoherence problem
discussed, for instance, in Refs.@10–12#. Our fluctuation
scheme in Eq.~1! should describe the time-averaged prop
ties of the system interacting with an external source of
noise ~to describe in general the correspondence betw
random Hamiltonians—stationary or nonstationary—a
problems containing unobserved degrees of freedom is
interesting but complicated task!. In this connection, an im-
portant message of the above calculations is that the rat
decoherence, measured by the entropy production,
change drastically with the intrinsic state of the system e
bodied in our case in the value of the initial parameterl in
the Hamiltonian. This rate is maximal at the avoide
crossing places, particularly in the phase-transitional reg
The pointer basis selected in the decoherence process
was shown to depend sensitively on the initiall. Even for a
small range of fluctuationsdl, the pointer basis can be com
pletely different from the initial~local! basis of the system
This does not contradict the recent result@12# that the pointer
basis tends to coincide with the energy eigenbasis in
weak system-environment coupling regime. In fact, the ra
of fluctuations is unrelated to the coupling strength; all t
above calculations most likely correspond to the stro
coupling limit because the system can be seen as driven
the environment to undergo the parameter fluctuations.

IV. THERMALIZATION

Thermal properties of closed quantum systems are
rently subject to intense discussions; see, for instance, R
@4,13–16# and the works cited there. In nuclear physics t
language of statistical thermodynamics is exclusively u
for the description of highly excited states. It appears tha
typical wave function of a sufficiently complex~chaotic?!
many-body system in a given rangeE6DE/2 of excitation
energy exhibits average properties expected for a therm
equilibrated system. TemperatureT can be defined in terms
of the smoothened densityV(E, . . . ) of states of the closed
system at given energyE ~dots symbolize quantum numbe
connected with other integrals of motion as angular mom
tum or parity! through the known formula

1

TLD
[

]

]E
ln V~E, . . . !. ~27!

The subscript ‘‘ LD’’ here indicates the relation of this defi
nition to the level density. Equation~27! can be understood
with the aid of the argument that information entropy
eigenstates~in terms of some mean-field basis@14,15#! in-
7-5
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CEJNAR, ZELEVINSKY, AND SOKOLOV PHYSICAL REVIEW E63 036127
creases with an increasing local density of states. In real
systems, whereV(E, . . . ) typically grows exponentially
with energy, the equivalent temperature in Eq.~27! is always
positive and also grows withE. For model systems with
finite Hilbert space, however, the level density has a pea
form ~most likely Gaussian! with the maximum at some en
ergy E0. The corresponding temperature is thus singula
E5E0 and negative forE.E0 ~see Fig. 53 in Ref.@15#!.

Temperature extracted according to Eq.~27! from the L
50 eigenspectrum of the Hamiltonian~2! with N530 is
shown in Fig. 5 as a function of the parameterl and excita-
tion energyEx ~counted from that of the ground state; s
Fig. 1!. The level densityV(E) for this class of states wa
obtained by the Gaussian smootheningV(E)5*G(E
2E8)V8(E8)dE8 of the exact microscopic state densi
V8(E)5(ad@E2Ea(l)#. Note that the energy rangeEx

,1.5 displayed in Fig. 5 contains a number of levels vary
with l ~see Fig. 1!. To ensure a smooth appearance of
function in Fig. 5, the width of the GaussianG(E2E8) in
the above convolution was chosen separately for each pa
eter value. The most interesting feature of Fig. 5 is the rid
at l'0.8. This corresponds to the phase-transitional reg
where the spectrum as a whole is maximally compressed
also maximally homogeneous, see Fig. 1. On the other h
the valley with the lowest temperature on the left-hand s
of the ridge in Fig. 5 coincides with the region of the max
mal increase of the state density with energy~this becomes
apparent if the spectrum in Fig. 1 is redrawn with a const
ground-state energy; see Fig. 4 in Ref.@17#!.

Below we investigate another aspect of the thermaliza
problem. We mentioned that the tentative thermal proper
of closed quantum systems can be discussed@4,14,15# as
originating from features of individual eigenstates. Howev
the randomness in the Hamiltonian~1! enables one to use a
alternative thermalization scheme@6# with the temperature
assigned to the system directly via the statistical ensem
~8!. For a given density operator%̂a(l), one can determine a
corresponding canonical ensemble~the ‘‘ thermal equiva-
lent’’ ! with the same basic physical features. The probl

FIG. 5. Temperature from Eq.~27! given by the density ofL
50 eigenstates of Eq.~2!, N530. The dependence onl and on the
excitation energyEx,1.5 is shown.
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can be formulated in a general way: given a density ma
%̂, find a HamiltonianĤ and inverse temperatureb51/T so
that

%̂5
1

Z
e2bĤ, ~28!

whereZ5tr@exp(2bĤ)#. In other words, we are looking fo
a canonically populated systemĤ that reproduces~for a cer-
tain temperatureT) our statistical ensemble%̂. For a
parameter-dependent density matrix%̂a(l) from Eq.~10! we
have the effective Hamiltonian

Ĥa~l!5 (
p51

n

ufp
a~l!&ep

a~l!^fp
a~l!u, ~29!

where ‘‘energies’’ ep
a(l) are to be calculated along wit

ba(l) so that Eq.~28! be satisfied. It should be remembere
that the results of this procedure depend, in general, on
value ofl and the initial statea. For the sake of simplicity,
however, we will sometimes omit the explicit mentioning
this dependence in the following derivations.

The condition~28! gives usn equations. Since the numbe
of variables to be found isn11 ~energies plus the tempera
ture!, the solution cannot be unique. Indeed, the scal
transformationb→b/c, ep→cep ~where c is an arbitrary
constant! certainly does not change the validity of Eq.~28!.
One can therefore impose an additional constraint. It
physically plausible to set the energy average of the equ
lent canonical ensemble to the mean energy of the termEa in
the range of the parameter change,

^e&5E d@dl#p~dl!Ea~l!. ~30!

Because of the normalization of the density matrix, we ha
an additional freedom of fixing one more physical parame
This can be used in order to prescribe the energy disper
of the canonical ensemble in the following way:

^D2e&[^e2&2^e&2

5E d@dl#p~dl!@Ea~l!#2

2F E d@dl#p~dl!Ea~l!G2

. ~31!

This procedure leads to the following set of equations:

rp5
1

Z
e2bep for p51 . . .n, ~32!

S5b^e&1 ln Z, ~33!

S82S25b2^D2e&, ~34!

where
7-6
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S85 (
p51

n

rp~ ln rp!2 ~35!

is fixed, like S, by the initial density matrix. The set~32!–
~34! can be solved from the bottom: given a prescribed va
of the energy dispersion, Eq.~34! yields the inverse tempera
ture b. It enters, along with the given energy average, E
~33!, which then yields the partition sumZ. This, together
with b from the previous step, enables one to determ
individual energies$ep% from the equations under Eq.~32!.

It is well known that in the canonical ensemble the ene
fluctuation is proportional to squared temperature throug
constantC that can be identified with the specific heat of t
system:̂ D2e&5CT2. With the aid of Eq.~34!, we can easily
determine the specific heat of our thermal equivalent:

C5S82S252 (
p51

n F rp ln rpS (
p851

n

rp8ln rp82 ln rpD G .

~36!

The quantity on the right-hand side measures the variab
of the set of the pointer basis occupancies$rp%p51

n : it is zero
for the uniform or Kronecker delta forms of the probabili
distribution and increases with the increasing spread of p
abilities within the interval@0,1#. For our goals, relative tem
perature in units of the rms energy,Trel5T/A^D2e&51/AC,
might be more useful thanT51/b itself: while canonical
temperatureTa(l) depends on the behavior ofEa(l), rela-
tive temperatureTrel

a (l) results solely from the mixing prop
erties of the model Hamiltonian and therefore appears m
universal. We thus deal only withC51/Trel

2 in the following.
Note that although the temperature of the thermal equiva
could be at first expected to coincide with the level-dens
temperatureTLD , which also implicitly depends on the mix
ing, the results given below do not agree with this expec
tion.

The question of typical values of the specific heat in E
~36! can be addressed by randomly generating the set
pointer basis occupancies$rp%p51

n uniformly distributed on
the hypersurface(prp51 in n-dimensional space, and acc
mulating the distribution ofS82S2. Forn→`, the result can
be obtained analytically. In this limit, individual probabilitie
rp5ap

2 become independent random numbers with
Porter-Thomas distribution@28#, i.e., with the Gaussian den
sity

wn~ap!5A n

2p
e2nap

2/2 ~37!

of the amplitudesap . The asymptotic form of the distribu
tion in question is thed function located at
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@S82S2#`5nE
2`

1`

da wn~a!a2~ ln a2!2

2FnE
2`

1`

da wn~a!a2ln a2G2

5
p2

2
24. ~38!

However, the convergence to this limit is rather slow in r
ality. Figure 6 shows the distribution ofS82S2 for n55 and
10 obtained from 104 generated sets$rp%p51

n . In both cases,
the peak is still wide and located well below the limit~38!.
The sensitivity of the distribution in Fig. 6 to the dimensio
implies that the expectation range of the specific heat
pends on the number of states involved in the random m
ing.

In Fig. 7, we present the specific heat~36! Ca correspond-
ing to the first, fourth and thirtieth eigenstate withL50 of
the model Hamiltonian~2! ~againN530) as a function ofl.
It is clear that the regions where the values ofCa signifi-
cantly increase coincide with the regions of enhancedS in
respective Figs. 2–4. Typical maxima of the specific hea
Fig. 7 do not reach the asymptotic value~38! but agree more
or less with lower-dimension expectation values from Fig.
It means that an effective dimensionneff given by the num-
ber of essentially nonzero eigenvaluesrp is much less than
the total number ofL50 eigenstates (n591). This agrees
with the notion discussed in Ref.@6# on the basis of the
perturbative calculations: roughly speaking, the number
principal components admixed in the pointer basis is de
mined by the characteristic order of perturbation theo
~number of admixed exciton classes in Fermi systems!. One
can also notice an apparent correspondence between s
peaks in the plots ofS ~Figs. 2–4! and couples of peaks
~‘‘twin peaks’’! in the respective plots ofC ~Fig. 7!. This
suggests the following scenario for the mixing in a vicini
of avoided crossings. At first, as the two or more levels
come closer, the distribution ofrp deviates from the Kro-
necker delta form so that bothS and C increase. As one
proceeds towards the avoided crossing point, roughly a
form populationrp'1/neff of involved states is developed

FIG. 6. The distribution of the heat capacity in Eq.~36! with the
probabilitiesrp randomly generated for dimensionsn55 and 10.
Also indicated is the asymptotic value~38!.
7-7
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which leads to a further increase ofS, but at the same time to
the observed decrease ofC @see the explanation below Eq
~36!#. In some cases the peaks inC do not split—see, e.g.
the upper panel of Fig. 7. This means that the mixing d
not always lead to the quasiuniform population. We chec
that the splitting also depends on the range of the param
fluctuations; for example, fors50.05, thea51 maximum
in C is already doubled.

Entropy S and specific heatC for the ground state hav
sharp maxima atl50.8, see upper panels in Figs. 2 and
Although these effects could be expected from earlier ar
ments based on the local increase of mixing around
point, they provide a physical insight into the related qua
tum critical phenomenon@17#. When dealing with the abrup
SU(3)→U(5) change of the ground-state structure in t
IBM, the term ‘‘ phase transition’’ is usually put in paren
theses or modified@18# to avoid a direct identification with
thermodynamic phase transitions@22#. The same holds true
for similar findings in fermionic models@29–31#. Now we
found a way how such effects can be translated into a t
thermodynamic language—into properties of the therm
equivalent. Of course, we still deal with a finite syste
where no change is really discontinuous. It is natural to
pect that for infinite boson numbers bothS and C become
singular at the critical point.

V. CONCLUSIONS

We studied some features of a parameter-dependent
dom Hamiltonian Ĥ(l1dl) with the parametric depen
dence carried by the mean valuel and randomness induce

FIG. 7. The specific heat, Eq.~36!, derived from the therma
equivalent of the density matrix~8! as a function ofl. The panels
from top to bottom correspond to the ensembles associated with
first, fourth, and thirtieth eigenstate of Eq.~2! with L50 and N
530.
03612
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by the fluctuationdl. In particular, we used the IBM-1 de
scribing a finite bosonic system, wherel controls transitions
between two incompatible dynamical symmetries, SU~3! and
U~5!, and fluctuations are mediated by a stochastic stren
of an incompatible perturbation, see Eq.~5!. Since individual
eigenstates of the unperturbed Hamiltonian~2! turn into den-
sity matrices~8! in the presence of fluctuations, it is possib
to naturally introduce quantities known from statistical phy
ics like entropy, temperature etc. We developed a sim
method that allows one to supply a given statistical ensem
by its ‘‘ thermal equivalent,’’ keeping both the energy ave
age and dispersion fixed, see Eqs.~32!–~34!.

For the whole range ofl covering the crossover regio
between the limiting dynamic symmetries, we numerica
evaluated~for selected states! coherent~von Neumann! en-
tropy and incoherent~information! entropy in the local basis
~15!. In the regime of small fluctuations they fulfill th
simple perturbative relation~25!. These entropies were foun
to be sensitive to the mixing induced by avoided crossings
levels in thel-dependent spectrum~compare Figs. 1 and
2–4!. In particular, the multiple avoided crossing atl'0.8
was shown to be substantial~Figs. 2 and 3!. We also
studied—with the aid of overlap entropy~14!—the relation
of the pointer basis~density-matrix eigenbasis at a givenl)
to other relevant bases. The overlap of the pointer basis w
the SU~3! basis is more or less random within the who
parameter range, while the overlaps with the local and U~5!
bases strongly increase approaching the U~5! limit ~Figs.
2–4!. Moreover, for the low-lying states, the U~5! basis itself
seems to be an ‘‘ attractor’’ for the pointer basis abovel
'0.8 ~Figs. 2 and 3!. This feature may invoke a simila
expectation of a strong dependence on parameters also
more realistic, environment-induced selection mechanism
the pointer basis.

Along with entropies, we calculated thel-dependence of
the specific heat~36! attributed to the given density matri
~8! via its thermal equivalent. It is determined as the prop
tionality constant between the energy dispersion and
squared temperature of the thermal equivalent. We sho
that the specific heat also reflects thedl-induced mixing of
eigenfunctions, but in a way different from coherent entro
It typically develops single and double peaks near avoid
crossings~compare Figs. 1 and 7!. An expected range o
values of the specific heat in case of a random mixing w
derived, see Fig. 6.

An important focus of our interest was the search for n
dynamical signatures of the ‘‘quantum phase transition’’ b
tween the SU~3! and U~5! symmetries, described so far on
on the level of energy eigenfunctions. We have discus
several new results related to this point.~i! The ridge in the
plot of thermodynamic~based on the level density! tempera-
ture atl50.8, see Fig. 5, is directly connected to the spec
level dynamics shown in Fig. 1.~ii ! The attraction of the
pointer basis associated with low-lying states towards
U~5! basis can also be considered as a phase-transitiona
nature. Although this effect is not clearly understood yet
reminds of a similar tendency of individual low-energ
eigenfunctions.~iii ! Ground-state entropy with a sharp pe
~Fig. 2, top! at the critical point and~iv! the specific heat

he
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with a similar behavior~Fig. 7, top! are the signatures pre
sumably related to standard thermodynamics of phase t
sitions.

In all cases we look at the critical parameter regi
through the response of individual eigenstates; this respo
is smeared for states higher in energy. On the other han
surprising and nontrivial result is the attraction of the poin
basis towards the U~5! dynamical symmetry basis for low
energy states in the region above the critical parameter va
We believe that these examples illustrate the potential c
plexity of situations that one can deal with when studying
decoherence process. In particular, interesting questions
raised by the possibility of using different entropylike a
e

E

t.

03612
n-

se
, a
r

e.
-

e
are

temperaturelike quantities for the description of the rando
ization of a mesoscopic system by an external noise.
interrelation between chaos, thermalization, and decohere
is a promising subject for future studies.
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