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Decoherence and thermalization in a simple bosonic system
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Properties of a parameter-dependent quantum system with the HamiltaGidnrandomized by fluctua-
tions of the parametex in a narrow range are investigated. The model emplofed interacting boson
model-1 exhibits a crossover behavior at a critical parameter value. Due to the fluctuations, individual eigen-
states|“(\)) of the Hamiltonian become statistical ensembles of stidessity matrice“(\)], which
allows us to study effects related to the decoherence and thermalization. In the decoherence part, we evaluate
von Neumann and information entropies of the density mati@®3.) and the overlaps of the eigenstates of
the density matrix with various physically relevant bases. An increased decoherence at the “ phase transi-
tional” point and an exceptional role of the dynamic-symmetip)basis are discovered. In the part devoted
to the thermalization, we develop a method of how a given density maff{x) can be represented by an
equivalent canonicaltherma) ensemble. Thermodynamic consequences of the quantum “phase transition”
(related, in particular, to the specific heat of the thermal equivebest discussed.
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[. INTRODUCTION tuations of the parameter in a narrow range, i.e.,
In recent years, one can observe an increasing interest in AOO—FA(\+6N) 1)

physical models whose Hamiltonians contain random vari-

ables (see, e.g., Refs[1-9]). The reasons why random . .
Hamiltonians are found important in various areas of physicé’vhere O\ is a random variable. The concrete model em-

are very different. The randomness can, for instance, mimigloyed’ representing a simplified system of bosons, is de-

th i f tidi ional i f Scribed in Sec. Il. The randomization in EG) implies that
€ sampiing of a mulldimensional parameter Space ot §,q0aq of definite energy eigenstates one has to deal with

deterministic and stationary quantum-mechanical problem iatistical ensembles of statégtensity matricesand the cor-

question(especially if the actual Hamiltonian parameters areesponding energy distributions. Such a transition from pure

not precisely known, like in the case of nuclear interactiong, mixed states resembles the environment-induced decoher-
[3,5]). A great success of random matrix theory, in particulargnce procesg10], widely discussed in connection with the
in applications of invariant ensembles of Hamiltoniansfyndamentals of quantum theory. One of the aims of this
(Gaussian orthogonal/unitary ensembles or the embedded epaper is to show that the study of random Hamiltonians of
semble[2,3,9), is related to the fact that the averaging overthe type(1) can be instructive for understanding of decoher-
random Hamiltonians of certain symmetry reveals the mosgnce effects that occur in realistic systems. A particularly
generic dynamic properties. In contrast, the randomness capteresting question concerns the relation of the formally in-
also represent real adiabatic fluctuations of an effectivgroduced pointer basfd1,17, i.e., the eigenbasis of the den-
Hamiltonian in time[1] (like in the case of atoms subject to sty matrix, to the physically relevant bases. These problems
randomly varying external fieldsin view of the very differ-  are investigated in Sec. Ill. We find the evidence of a non-
ent purposes for studying random Hamiltonians, it does nofrjyial and sensitive dependence of the pointer basis on spe-
surprise that the spectrum of relevant theoretical problems igjfic properties of the unperturbed Hamiltonian.
very wide. Along with the prOblemS well accommodated in Another part of the paper is devoted to the prob|em of
physics, as the description of local <_:orre|ations in spectra anghermalization in finite quantum systerfs3]. It appears to
eigenstates of complex systems, it extends to fundament@bid generically that any system of particles with a suffi-
but still not fU"y understood prOblemS related to the deCO'Cienﬂy Complex interaction can be, to a |arge extent’ charac-
herence{6,10-12 and thermalizatio4,13—14. These as-  terized by purely thermal attributes, like the grand canonical
pects are addressed in the present paper. population of single-particle states or thermodynamic en-
The random Hamiltonian we use arises from a determingropy in its relation to the complexity of the eigenstates
istic, parameter-dependent Hamiltonigif{\) through fluc-  [4,14-184. Using the random Hamiltoniafl), we analyze in
Sec. IV another method of assigning a temperature scale to a
given system. A special attention is paid to the correspon-

*Electronic address: pavel.cejnar@miff.cuni.cz dence between thermal and quantum-mechanical properties
TElectronic address: zelevinsky@nscl.msu.edu of the system in the vicinity of the phase-transitional behav-
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Il. THE MODEL 1.5

In the present work, the parameter-dependent Hamil-

tonianH(\) of Eq. (1) was chosen within the framework of
the interacting boson modélBM), well known in the de-
scription of collective excitations of atomic nuc[di8,19. In
its simplest form(IBM-1), the model describes a system of a =
fixed total numbemN of bosons with spins 0 or 2s(and d > °
boson$. The model Hilbert space is finite, its basis being W
generated byl successive applications of boson creation op- g5
eratorss’ and/ordL (whereu=—2, ... ,+2 is the spin pro-
jection) on a vacuum stat¢0). The most general IBM-1 ]
Hamiltonian contains all possible one- and two-body terms
and has five free parametdisnot counting the additive and
scaling constanjs Varying these parameters, one can reach
the domains of the parameter space where the model pos
sesses one of its possible dynamical symmetries; the Hamil- .
tonian then becomes analytically solvable and integrable. ~ FIG. 1. The parameter-dependént 0 spectrum of the Hamil-
We use a simplified, single-parameter Hamiltonian thafonian(2) with N=30.
continuously covers the limiting cases of the(SlUand U5)

0.51

dynamical symmetries binary I_evel collisions appear at other plac_es. These struc-
tures will be shown to play an important role in the following
. S analyses.
H(N)=\ng— TQ-Q. (2 After the randomization according to E(.), the Hamil-
tonian can be expressed as
Here A+ =R+ A’ )
ng=d’-d 3 with
is thed-boson number operator and Lo 1, .
H’=nd+NQ~Q. (6)

Q,=d's+s'd —ﬂ(d*xa)@) (4) , . , ,
me ] 5 We considerid\ to be a Gaussian random variable with zero

mean and dispersion®<1. The unperturbed part of the
is a quadrupole operatft -” and “ X stand for the scalar Hamiltonian(5) is deterministic and carries the dependence
and tensor products, respectively, a’a,g:(_)ﬁdw; the of the problem on\, while the randomness is introduced

angular momentum in the IBM is defined {1%: J1o@"  through the fluctuating strength of the perturbatioh Note
XH)E})]. The SU3) dynamical symmetry is reached far that the incompatibility of both the terms in E) (and thus

B L . the efficiency of the random perturbatjohas noa priori
=0 and the W5) symmetry forh=1; we therefore consider parametric dependence since the commutator
the parameter rangee[0,1].

It is well known that the SU(33»U(5) transition has a R R 1. ..
critical character in the IBM18,20,2]. For the Hamiltonian [H(N),H = N[nd ,Q-QJ]#0 (7)
(2), a kind of a phase transition takes place.at0.8, where
a multiple gvoided crossing _of_ levels in the_lower part of theis independent of.
spectrum increases the efficiency of mixing of the corre-
sponding eigenfunctiongl7]. The form of the eigenstates
changes drastically in this region resulting in an abrupt onset lll. DECOHERENCE
of the U5) regime (similar to first-order phase transitions  pye to the fluctuations of the parameteiin the Hamil-

[22]). To be exact, for finite boson numbers one can only talkton'an B(N). anv of its eigenstateks(\)) =S .a%(\)li
about quasicriticality because the transition is not truly dis- : (A), any ! '9 (V) =2t (W]

continuous. It was shown, nevertheless, to be fast enougttﬁansmrmS into a density operator defiriéd by

even for not too large boson numb¢is]. The\-dependent R

energy spectruniE*(\)}"_, of the states with angular mo- Q“(?\)Zf dL SN[ (N + SN))p(SN) (P (N + 6N,
mentumL =0 is shown in Fig. 1 for the total number of (8)
bosonsN= 30 (cf. Figs. 4 and 5 in Ref{17]). In this case,

the dimensiom=91. A “macroscopic” avoided crossing of wherep(S\) is the distribution of the fluctuations\ in Eq.

the levels located in the lower part of the spectrum can bél). Equation(8) enables one to use the standard formalism
identified in the critical\~0.8 region, while some minor of quantum statistical physics, calculating the ensemble av-
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erage of any physical quantity as (A)=tr(Ag). The en-
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duced by an interaction with additional degrees of freedom.

semble averaging can be considered equivalent to the timl@ case of no extra interaction, however, information entropy

averaging in case of slow, adiabatic fluctuatiggt). In an
arbitrary basis3={|i)}[_,, the density operata8) has the
following form:

(ile“Mli)=eff(M)s
= J dloN]p(N)af' (A + N )*af" (N + ON).

(9)

Its diagonalization then yields, at each pointthe density-
matrix eigenvaluep(\) and eigenvector{s¢3(k))

é“m:p; |p2(N)) PR 2N (10)

It is clear that the diagonalized form of the density matrix
contains only information on the occupation probabilities of
the density-matrix eigenstates and no quantum correlation
The eigenbasis

BN ={l¢p(M))}p-1 11
will hereafter be called thpointer basisin agreement with
Refs.[10—12. In our case it is associated with a given value

merely disregards a part of quantum knowledge available on
the system[See, however, the discussi¢h4,15 of the
inter-relation between therm&on Neumanhinvariant en-
tropy, wave function(information entropy, and single-
particle fermion entropy calculated in the nuclear shell
model basis; for the self-consistent mean field they are prac-
tically equivalent due to the self-averagihgor the purpose
of this paper, we call von Neumann entrof}?) coherent
(similar to “correlational” of Ref.[6]), whereas information
entropy(13) will be referred to asncoherent
The family of physically informative entropies can be
supplemented byverlapentropyO. We define it as a mea-
sure of the average overlap between the two bagks,
={li)}iey and B'={[j" )},
1 n
O(B,B")= =

i=1

2 KPP as

ts minimal value,0=0, is reached fol3=5'. As the two
ases deviate from each other, the overlap entropy increases
but—because of the orthogonality constraints—it can never
reach the uppermost limit im A probable saturation value is
close t00,,~In(0.4&), which is the asymptotic expecta-
tion value of the overlap entropy for two randomly chosen

bases, as determined by the random-matrix theory. Informa-

of N and theath energy eigenstate. It should be stressed thation entropy of eigenfunctions studied from the viewpoint of
whereas the pointer basis fundamentally results from an inmany-body chao$15,25 is in fact overlap entropy of the

teraction of the given system with an environméittiis

eigenbasis and a “simple” reference basis, for example, the

makes initial pure states of the system develop into statisticahean field one.

mixtureg [10], in our case it arises through the fluctuation of
\.

The degree of “impurity” of a given mixed state is

quantified[6] by von Neumann entrop$= —tr(¢ In o), i.e.,
for the density matrix10),

SUN)== 2, g pg(N). (12)

It varies from zero for a pure state = 5pp0) to Inn for a

maximally uncertain mixed statepf=1/n). In a similar
fashion, the degree of fragmentation in a fixed b#bkan be
expressed via Shannon information entroggf. Refs.
[14,15,23-2%and references thergin

'g(”:‘; ei(N)sinef(N)s. (13

Again, information entropy increases from O tonlras the
state is getting more fragmented in the baSisVon Neu-
mann entropy(12) depends on both on-diagonal and off-

diagonal matrix elements of the density matrix in any basis
and its value is basis independent. On the contrary, informa-

tion entropy (13) neglects correlations carried by the off-
diagonal elements in the specific baBiand thus depends on

B. It would coincide with von Neumann entropy if the cor-
relations vanish due to a dynamical decoherence process i

Of special interest in the present problem is the choice
when the reference basfof incoherent entropyl13) coin-

cides with the local eigenbasis BI‘()\),

BNV={¢P(M)) =1

Perturbation theory can be used to develop a simple formula
relating coherent and incoherent entropy with overlap en-
tropy between the local and pointer bases. Namelgifin

Eqg. (5) is considered to be small enough, it is sufficient to
expand the density matri@) in the local basi$15) up to the
(SN\?y=0? terms[6]. In this approximation, the density ma-

trix 0 corresponding to the energy teaf(\) has just two
nonzero eigenvaluep,=1 and 2,

(15

pT(N)=1—c’w*(\), (16)
p5(N)=a?w*(\), (17)
where
weN)= 2 [vg(M)12 (18)
B#a
BOVH %\
vg()\)=<dj( )| H[( )>’ 19

EA(N)—E*(\)

mith the corresponding eigenvectors
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[T (N))=[4*(N)), (20) a=1
0.3 1
|¢)a()\)>%; 2 va()\)|¢5()\)> 21) coherent
? JWEN) fFa P ' .
o | e incoherent
For coherent and incoherent entropy in E(2) and (13), o
we obtain N 4,

S*(N)=—pT(M)INpf(N)—p5(M)Inps(N) (22

and

500N =~=pI(M)Inpf(N)
—;a[ovgwrln[avg(x)]z, (23

respectively, while overlap entropy between the local and -
pointer bases is given by

v%(\)]? ve(N)]? 0 o1 o2 o3 o4 05 o6 07 08 09
O[B.(A),Bg(x)]~— E [ 5( )] [ 5(M)] %
B#a >\) W)
(24) FIG. 2. Entropies characterizing the density matf® con-
. nected with the first =0 eigenstate of the Hamiltoniai2) for N
Whereas coherent and incoherent entropy, E2@. and  — 30 posons as functions af. The rms of the zero-mean Gaussian

(23), respectively, both vanish i#*—0, the overlap entropy variable 5\ is o=0.01. The coherent entropy and incoherent en-
in Eq. (24) stays nonzero for any?>0 because even a tropy in the local basis, Eq$12), (13), and(15), are drawn in the
small perturbation singles out the same direction in densityupper panel. The lower panel shows overlap entropies(E, of
matrix eigenspackb] regardless of the strength, see E2ll).  the pointer basis with the local $8) and U5) bases.
Combining the last expression with Eq22) and (23), one
obtains to keep the perturbative relatiof25) valid. The respective
5 lower panels display overlap entropiés4) of the pointer
o0 (M) =S (M) =" nwi(M)OLB(M).Bp(M)]. (25 pasisB2(\) with the local basig()), with the SU3) basis
Bi(\= 0) and with the 5) basisB(A=1). As seen from
This means that incoherent entropy in the local basis is larger
than corresponding coherent entropy, the difference bein¢ a=4
proportional to overlap entropy between the local and pointer
bases. In general, the difference of incoherent entropy, Eq
(13), in an arbitrary basi®={|i)}{_, and coherent entropy,

] ) ) 05 4 coherent
Eq. (12), is not negative and can be written down as _

n n n 6 044 eeeeeeeo. incoherent
IB_SZE Pp Inpp_E |<i|¢p>|2|n( 2 pp’|<i|¢p’>|2) v

p=1 =1 p'=1 0.2 1
(26)

(we skipped here the referencedcand\). Thus, for a pure OO oz o3 os
statepp= dyp,, S=0 while I 5 gives information entropy of 1

the pointer statéqspO} in the basisi5. Only in the chaotic
limit of p,=1/n, we come toS=1z=Inn.

The above discussed entropies were calculated numeri
cally for the random Hamiltoniaits) with N=30. The re- © 271
sults forL=0 states labeled by=1, 4, and 30(cf. Fig. 1)
are shown in Figs. 2, 3, and 4, respectively. The Gaussiar 11
distribution p(S\) was used with 6A\)=0 and {\?)=¢
=0.01, and the parameter range displayed s O s s o o5 TS
€[0.03,0.97. The upper panels of Figs. 2—4 present coher- ' ' ’ ' )\ ) ' ' '
ent entropy(12) and incoherent entropyl3) in the local
basisB=Bj(\). The used value of is clearly small enough FIG. 3. The same as in Fig. 2, but for the fouttk 0 state.
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a=30 €[0.8,1]. In this region, the (b) basis serves as an
“attractor’—the pointer basis always deviates from the lo-
cal basis in the direction of the (B) basis. This finding
seems to generalize the known sharp onset of tf&® tbm-
ponent in wave functions of low-lying states at the phase-
transitional poin{17]. It does not therefore surprise that—
similar to the wave-function case—the preference of the
U(5) basis to the local bases disappears for higher-energy
states, like the one witkk=30 in Fig. 4.

We would like to emphasize here the relation of topics
studied in this section to the general decoherence problem as
discussed, for instance, in Refisl0—12. Our fluctuation
scheme in Eq(1) should describe the time-averaged proper-
ties of the system interacting with an external source of the
noise (to describe in general the correspondence between
random Hamiltonians—stationary or nonstationary—and
problems containing unobserved degrees of freedom is an
interesting but complicated taskn this connection, an im-

084 ___ coherent R incoherent

S or |l

....................... u(s) portant message of the above calculations is that the rate of
decoherence, measured by the entropy production, may
O0n oz o5 o4 o5 o o7 08 0% change drastically with the intrinsic state of the system em-
A bodied in our case in the value of the initial parameten

the Hamiltonian. This rate is maximal at the avoided-
crossing places, particularly in the phase-transitional region.
The pointer basis selected in the decoherence process also
the upper panels of Figs. 2—4, the response ofitlepen-  was shown to depend sensitively on the inikalEven for a
dence of coherent and incoherent entropy varies substantialimall range of fluctuationé\, the pointer basis can be com-
for different energy terms. While the ensemble originating pletely different from the initiallocal) basis of the system.
from the ground statea(=1) produces a single peak of both This does not contradict the recent re$al] that the pointer
coherent and incoherent entropy at the phase-transition&asis tends to coincide with the energy eigenbasis in the
point A =0.8, the other two ensembles lead to more compli-weak system-environment coupling regime. In fact, the range
cated structures. In the case®f 4 (Fig. 3), the increase of of fluctuations is unrelated to the coupling strength; all the
Sand| still takes place in the phase-transitional region 0.7above calculations most likely correspond to the strong-
<\<0.9, but it does not have a single-peaked form. &or coupling limit because the system can be seen as driven by
=30 (Fig. 4), bothSand| develop a chain of peaks ranging the environment to undergo the parameter fluctuations.
from A~0.2 to 0.9. The underlying mechanism responsible
for these differences is the mixing of various eigenfunctions IV. THERMALIZATION
induced by the change af. It was extensively discussed in )
the framework of the universal decorrelation theory of Thermal properties of closed quantum systems are cur-
parameter-dependent systefsse, e.g., Refd26,27), and  ently subject to intense discussions; see, for instance, Refs.
also specifically for the IBM-117]. The proximity of levels ~[4,13—16 and the works cited there. In nuclear physics the
enhances the efficiency of mixirfgf. Eq. (19)]. Indeed, un-  1anguage of statistical thermodynamics is exclusively used
der a scrutiny, one can find a one-to-one correspondend®r the description of highly excited states. It appears that a
between the peaks &fand| in Figs. 3 and 4 and the avoided tyPical wave function of a sufficiently completchaotic?
crossings of the respective lines€4 and 30 with their ~ Many-body system in a given range= AE/2 of excitation
neighbors in Fig. 1. energy exhibits average properties expected for a thermally
Overlap entropies in the lower panels of Figs. 2—4 alsgquilibrated system. Temperatu'Fecan be defined in terms
carry interesting physical information. First, the overlap be-Of the smoothened densify(E, . . .) of states of the closed
tween the pointer and SB) bases is essentially random System at given enerdy (dots symbolize quantum numbers
within the whole parameter range displayed and for all thre€onnected with other integrals of motion as angular momen-
states considere@in the present case, the above-mentionedUm or parity through the known formula
saturation value of overlap entropy @,,,~3.78). On the
other hand, inspite of the independence of the commutator in 1 iln Q(E ) 27)
Eq. (7) on \, the overlap of the pointer basis with the local To JE T
and U5) bases substantially increas@be overlap entropy
decreasgsabove\ ~0.8; below this point it again reaches The subscript “ LD"” here indicates the relation of this defi-
the random limit. Especially interesting is the fact that fornition to the level density. Equatiof27) can be understood
a=1 and 4(Figs. 2 and B the pointer basis overlaps more with the aid of the argument that information entropy of
with the U5) basis than with the local bases for  eigenstategin terms of some mean-field badi$4,15) in-

FIG. 4. The same as in Fig. 2, but for the thirtietk-0 state.
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can be formulated in a general way: given a density matrix

o, find a Hamiltoniarf¢ and inverse temperatug@= 1/T so
that

AR 1 -
AN OGS B
T, . 0=5e ", (29)
IS Z
T, S

SOOI
0000’0: 0’0'0‘

0 ~ .

3:3:3:3‘;‘ SR whereZ=tr[exp(—BH)]. In othfar words, we are looking for
a canonically populated system that reproducesfor a cer-
tain temperatureT) our statistical ensemblep. For a

parameter-dependent density magi%(\) from Eq.(10) we
have the effective Hamiltonian

FIG. 5. Temperature from Ed27) given by the density ot - " N N N
=0 eigenstates of E¢2), N=30. The dependence anand on the HE(N)= p§=:1 |¢p()\)>6p()\)<¢p()\)|i (29
excitation energye,<<1.5 is shown.

where “energies” e;(\) are to be calculated along with
creases with an increasing local density of states. In realistiB8“(\) so that Eq(28) be satisfied. It should be remembered
systems, whereQ)(E, ...) typically grows exponentially that the results of this procedure depend, in general, on the
with energy, the equivalent temperature in B2y) is always  value of\ and the initial stater. For the sake of simplicity,
positive and also grows witlE. For model systems with however, we will sometimes omit the explicit mentioning of
finite Hilbert space, however, the level density has a peakethis dependence in the following derivations.

form (most likely Gaussianwith the maximum at some en-  The condition(28) gives usn equations. Since the number
ergy E,. The corresponding temperature is thus singular aff variables to be found ia+1 (energies plus the tempera-
E=E, and negative foE>E, (see Fig. 53 in Ref15]). ture), the solution cannot be unique. Indeed, the scaling

transformationg— B/c, e,—ce, (wherec is an arbitrary
constank certainly does not change the validity of EG8).

One can therefore impose an additional constraint. It is
physically plausible to set the energy average of the equiva-
lent canonical ensemble to the mean energy of the Efrim

the range of the parameter change,

Temperature extracted according to E27) from thelL
=0 eigenspectrum of the Hamiltonia®) with N=30 is
shown in Fig. 5 as a function of the paramexeand excita-
tion energyE, (counted from that of the ground state; see
Fig. 1). The level density)(E) for this class of states was
obtained by the Gaussian smoothenidy(E)=[G(E
—E")Q'(E')dE’" of the exact microscopic state density
Q'(E)=3,6[E—E*\)]. Note that the energy rangg, <€>=f d[SNIp(SN)E*(N). (30)
< 1.5 displayed in Fig. 5 contains a number of levels varying
with \ (see Fig. 1 To ensure a smooth appearance of theBecause of the normalization of the density matrix, we have
function in Fig. 5, the width of the Gaussida(E—E’) in an additional freedom of fixing one more physical parameter.
the above convolution was chosen separately for each paranihis can be used in order to prescribe the energy dispersion
eter value. The most interesting feature of Fig. 5 is the ridgef the canonical ensemble in the following way:
at \~0.8. This corresponds to the phase-transitional region,

where the spectrum as a whole is maximally compressed, but (A%e)=(e)—(e)?
also maximally homogeneous, see Fig. 1. On the other hand,
the valley with the lowest temperature on the left-hand side =f d[ SN ]p(SN)[EX(N)]?

of the ridge in Fig. 5 coincides with the region of the maxi-
mal increase of the state density with enefthis becomes
apparent if the spectrum in Fig. 1 is redrawn with a constant
ground-state energy; see Fig. 4 in Ref7]).

Below we investigate another aspect of the thermalizatiorThis procedure leads to the following set of equations:
problem. We mentioned that the tentative thermal properties

2
d[ON]P(ON)E*(N) | . (31

of closed quantum systems can be discudskil4,19 as 1 _

originating from features of individual eigenstates. However, Pp‘ze Pe for p=1...n, (32)
the randomness in the Hamiltoniéh enables one to use an

alternative thermalization scheni6] with the temperature S=p(e)+InZ, (33
assigned to the system directly via the statistical ensemble

(8). For a given density operator*(\), one can determine a S — =% A%), (34)

corresponding canonical ensemilbe “ thermal equiva-
lent”) with the same basic physical features. The problemwhere
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S'=2, po(inpy)? 35 2

is fixed, like S, by the initial density matrix. The s€82)—

(34) can be solved from the bottom: given a prescribed value
of the energy dispersion, E(4) yields the inverse tempera-
ture B. It enters, along with the given energy average, Eq.
(33), which then vyields the partition sui. This, together , , , , P :
with 8 from the previous step, enables one to determine © 02 0.4 0.6 08 ! 12 1.4
individual energiege,} from the equations under E¢B2). S'—g?

It is well known that in the canonical ensemble the energy o o )
fluctuation is proportional to squared temperature through a_©'C: 6. The distribution of the heat capacity in &86) with the
constantC that can be identified with the specific heat of the%gg?gg'itégfgg irsa:lhdeo;nslyngetr; ?ir:t\?; mfg;)d'mens'ongs and 10.
system(AZe)=CT?2. With the aid of Eq(34), we can easily ymp '
determine the specific heat of our thermal equivalent:

+ oo

[S' —S?]..= nf daw,(a)a?(Ina?)?

n

C=S'-8=-2
p=1

n
ppln pp( 21 pprIn ppr—lnpp)l. _
p'=
(36)

+oo 2
nj daw,(a)a’lna?

—— a4 (39)

The quantity on the right-hand side measures the variability

of the set of the pointer basis occupan({iﬁg,g:l: itiszero  However, the convergence to this limit is rather slow in re-
for the uniform or Kronecker delta forms of the probability lity. Figure 6 shows the distribution 51;_52 forn=5 and
distribution and increases with the increasing spread of probl0 obtained from 1bgenerated setg,};_; . In both cases,
abilities within the interval 0,1]. For our goals, relative tem- the peak is still wide and located well below the lini®8).
perature in units of the rms energI/,,e,zTN(Aze): 1/JC,  The sensitivity of the distribution in Fig. 6 to the dimension
might be more useful thaif=1/3 itself: while canonical implies that the expectation range of the specific heat de-
temperaturér*(\) depends on the behavior BF(\), rela- pends on the number of states involved in the random mix-
tive temperaturd %,(\) results solely from the mixing prop- '"9-

erties of the model Hamiltonian and therefore appears more N Fig. 7, we present the specific h¢a6) C* correspond-

universal. We thus deal only Wim:l/TrzeI in the following. ing to the first, .four.th and thi_rtieth eigenstate wII_f#O of
e model Hamiltoniat2) (againN=30) as a function of.

Note that although the temperature of the thermal equivalent ™ ) L
could be at first expected to coincide with the level-density!t 1S cléar that the regions where the valuesGSf signifi-

temperaturel,p, which also implicitly depends on the mix- cantly increase coincide with the regions of enhangad
ing, the results given below do not agree with this eXpec,&,ﬂ[espectlve Figs. 2—4. Typical maxima of the specific heat in
tion. Fig. 7 do not reach the asymptotic val(83) but agree more

The question of typical values of the specific heat in Eq.or less with Iower-dime_nsim expeptation values from Fig. 6.
(36) can be addressed by randomly generating the sets of means that an effective dimensiogy given by the num-
pointer basis occupanciq;ap}g:l uniformly distributed on ber of essentially nonzero eigenvalygsis much less than

the hypersurfac&€ ,p,= 1 in n-dimensional space, and accu- the total number oL =0 eigenstatesn(=91). This agrees
mulating the distribution 08’ — S?. Forn— =, the result can with the notion discussed in Ref6] on the basis of the

be obtained analytically. In this limit, individual probabilities PErurative calculations: roughly speaking, the number of

pp=a,2) become independent random numbers with thGprmcmal components admixed in the pointer basis is deter-

o . : . mined by the characteristic order of perturbation theory
SPig;ter-Thomas distributiof28], i.e., with the Gaussian den- (number of admixed exciton classes in Fermi systeidse

can also notice an apparent correspondence between single
peaks in the plots ofs (Figs. 2—4 and couples of peaks
(“twin peaks”) in the respective plots of (Fig. 7). This

W, (ay)= 1 /_efna’z)lz (37) suggests the following scenario for the mixing in a vicinity

mee 2 of avoided crossings. At first, as the two or more levels be-

come closer, the distribution gf, deviates from the Kro-
necker delta form so that bot8 and C increase. As one

of the amplitudesa,. The asymptotic form of the distribu- proceeds towards the avoided crossing point, roughly a uni-

tion in question is theS function located at form populationp,~1/n¢ of involved states is developed,
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08 by the fluctuationd\. In particular, we used the IBM-1 de-
064 o=1 scribing a finite bosonic system, whexecontrols transitions
between two incompatible dynamical symmetries($dnd
U(5), and fluctuations are mediated by a stochastic strength
024 of an incompatible perturbation, see E§). Since individual

0 : , : : , ; ‘ ‘ , eigenstates of the unperturbed Hamilton{@nturn into den-

' ' ' ' sity matriceq(8) in the presence of fluctuations, it is possible
to naturally introduce quantities known from statistical phys-
ics like entropy, temperature etc. We developed a simple
C o4+ method that allows one to supply a given statistical ensemble
by its “ thermal equivalent,” keeping both the energy aver-
age and dispersion fixed, see E(R2)—(34).

0.4 1

0.8

0e4 =4

0.2 4

O oh o o4 o5 o085 o7 o8 o9 For the whole range ok covering the crossover region
08 between the limiting dynamic symmetries, we numerically
s 0=30 evaluated(for selected statescoherent(von Neumanh en-

tropy and incohereninformation entropy in the local basis
0.4 7 (15). In the regime of small fluctuations they fulfill the
024 simple perturbative relatiof25). These entropies were found
to be sensitive to the mixing induced by avoided crossings of
07T 02 03 o4 o5 o6 o7 08 09 levels in the\-dependent spectruricompare Figs. 1 and
A 2—4). In particular, the multiple avoided crossinget=0.8

FIG. 7. Th ific heat Ed36). derived f the th | was shown to be substantidFigs. 2 and 3 We also
IG. 7. The specific heat, Eq36), derived from the thermal gy jieq ith the aid of overlap entrof4—the relation
equivalent of the density matri8) as a function of\. The panels of the pointer basi¢density-matrix eigenbasis at a giva
from top to bottom correspond to the ensembles associated with tt}% other relevant bases. The overlan of the pointer basis with
first, fourth, and thirtieth eigenstate of E) with L=0 andN .. ) P p .

—-30 the SU3) basis is more or less random within the whole

' parameter range, while the overlaps with the local ars) U
bases strongly increase approaching th@&)Uimit (Figs.

which leads to a further increase §fbut at the same time to 2_4). Moreover, for the low-lying states, the(§) basis itself

the observed decrease Gf[see the explanation below Eq. seems to be an * attractor” for the pointer basis above

(36)]. In some cases the peaks@do not split—see, e.g., _ . . . o
the upper panel of Fig. 7. This means that the mixing doe%.‘o'8 (Figs. 2 and § This feature may invoke a similar

not alwavs lead to the quasiuniform pooulation. We checke Xpectation of a strong dependence on parameters also for a
yS 1€ q Pop ’ ore realistic, environment-induced selection mechanism of
that the splitting also depends on the range of the paramet

. , e pointer basis.
fluctqatlons, for example, for=0.05, thea=1 maximum Along with entropies, we calculated thedependence of
in C is already doubled.

Entropy S and specific hea€ for the ground state have the specific heat36) attributed to the given density matrix

sharp maxima ak =0 8. see er panels in Fias. 2 and 7 (8) via its thermal equivalent. It is determined as the propor-
AIthc?u h 2[(rl1ese efaecis'couldut?g expected Ifrorrggee\rlier ar l‘Jt_ionaIity constant between the energy dispersion and the
9 P 9 quared temperature of the thermal equivalent. We showed

?0?2:5 tr?:;i)orlos:ele[hae plﬁ;gilcgllcigi?sr?t ?rftonllr)l(lengr]elzrtcen(;n(?ug;\a-tiat the specific heat also reflects te-induced mixing of
tum critical phenomenofiL7]. When dealing with the abrupt eigenfunctions, but in a way different from coherent entropy.

. It typically develops single and double peaks near avoided
SU(3)—U(5) e‘hange of the_ _greend—state struct_ure In thecrossings(compare Figs. 1 and)7An expected range of
IBM, the term “ phase transition” is usually put in paren-

theses or modifiel18] to avoid a direct identification with values of the specific heat in case of a random mixing was

X " derived, see Fig. 6.
thermodyna_mp phaee tran.S|t|.oﬁ&2]. The same holds true An important focus of our interest was the search for new
for similar findings in fermionic model§29—-31. Now we

found a way how such effects can be translated into a truldynamical signatures of the “quantum phaee transition” be-
thermodynamic language—into properties of the thermal ween the S(B) and U5) s_ymmetrle_s, described so fer only
equivalent. Of course, we still deal with a finite system n the level of energy elgenfun_cnon_s_. we h_ave (_Jllscussed
where no ehange is re,ally discontinuous. It is natural to ex_several new results r_elated fo this poifil. The rl_dge in the
pect that for infinite boson numbers boEB.hand C become plot of thermodynamuﬁbaeed.on the level dens)t;empera-. .
singular at the critical point ture at)\=0.8_, see Fig. 5_, is c_jlrect_l_y connected to the specific
' level dynamics shown in Fig. 1ii) The attraction of the
pointer basis associated with low-lying states towards the
V. CONCLUSIONS U(5) basis can also be considered as a phase-transitional sig-
nature. Although this effect is not clearly understood yet, it
We studied some features of a parameter-dependent rafsminds of a similar tendency of individual low-energy
dom HamiltonianH(\ + &\) with the parametric depen- eigenfunctions(iii) Ground-state entropy with a sharp peak
dence carried by the mean valheand randomness induced (Fig. 2, top at the critical point andiv) the specific heat
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with a similar behaviorFig. 7, top are the signatures pre- temperaturelike quantities for the description of the random-
sumably related to standard thermodynamics of phase trafeation of a mesoscopic system by an external noise. The
sitions. interrelation between chaos, thermalization, and decoherence
In all cases we look at the critical parameter regionis a promising subject for future studies.
through the response of individual eigenstates; this response
is smeared for states higher in energy. On the other hand, a
surprising and nontrivial result is the attraction of the pointer
basis towards the (3) dynamical symmetry basis for low-
energy states in the region above the critical parameter value. This work was supported by the NSF Grant Nos. 96-
We believe that these examples illustrate the potential con35207 and 00-70911, and partly by the GRGrant No.
plexity of situations that one can deal with when studying the202/99/1718. P.C. and V.V.S. thank the National Supercon-
decoherence process. In particular, interesting questions adeicting Cyclotron Laboratory for its hospitality and excellent
raised by the possibility of using different entropylike and working conditions.
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